This entry is about the concept in differential geometry. For the concept of Jacobian variety see there.
synthetic differential geometry
Introductions
from point-set topology to differentiable manifolds
geometry of physics: coordinate systems, smooth spaces, manifolds, smooth homotopy types, supergeometry
Differentials
Tangency
The magic algebraic facts
Theorems
Axiomatics
Models
differential equations, variational calculus
Chern-Weil theory, ∞-Chern-Weil theory
Cartan geometry (super, higher)
If is a -differentiable map, between Cartesian spaces, its Jacobian matrix is the matrix
where . Here the convention is that the upper index is a row index and the lower index is the column index; in particular is the space of real column vectors of length .
In more general situation, if is differentiable at a point (and possibly defined only in a neighborhood of ), we define the Jacobian of map at point as a matrix with real values .
That is, the Jacobian is the matrix which describes the total derivative.
If the Jacobian matrix is a square matrix, hence its determinant is defined and called the Jacobian of (possibly only at a point). Sometimes one refers to Jacobian matrix rather ambigously by Jacobian as well.
The chain rule may be phrased by saying that the Jacobian matrix of the composition is the matrix product of the Jacobian matrices of and of (at appropriate points).
If is a -map of -manifolds, then the tangent map defined point by point abstractly by , for , can in local coordinates be represented by a Jacobian matrix. Namely, if and are charts and (i.e. for all germs ), then
Last revised on June 9, 2023 at 13:57:22. See the history of this page for a list of all contributions to it.